\(\int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx\) [278]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 25, antiderivative size = 71 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=a^2 x-\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}+\frac {a^2 \cos (c+d x)}{d}-\frac {a^2 \cos ^3(c+d x)}{3 d}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{d} \]

[Out]

a^2*x-a^2*arctanh(cos(d*x+c))/d+a^2*cos(d*x+c)/d-1/3*a^2*cos(d*x+c)^3/d+a^2*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.09 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {2952, 2715, 8, 2672, 327, 212, 2645, 30} \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}-\frac {a^2 \cos ^3(c+d x)}{3 d}+\frac {a^2 \cos (c+d x)}{d}+\frac {a^2 \sin (c+d x) \cos (c+d x)}{d}+a^2 x \]

[In]

Int[Cos[c + d*x]*Cot[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

a^2*x - (a^2*ArcTanh[Cos[c + d*x]])/d + (a^2*Cos[c + d*x])/d - (a^2*Cos[c + d*x]^3)/(3*d) + (a^2*Cos[c + d*x]*
Sin[c + d*x])/d

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 2645

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Dist[-(a*f)^(-1), Subst[
Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2]
 &&  !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])

Rule 2672

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff)
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rubi steps \begin{align*} \text {integral}& = \int \left (2 a^2 \cos ^2(c+d x)+a^2 \cos (c+d x) \cot (c+d x)+a^2 \cos ^2(c+d x) \sin (c+d x)\right ) \, dx \\ & = a^2 \int \cos (c+d x) \cot (c+d x) \, dx+a^2 \int \cos ^2(c+d x) \sin (c+d x) \, dx+\left (2 a^2\right ) \int \cos ^2(c+d x) \, dx \\ & = \frac {a^2 \cos (c+d x) \sin (c+d x)}{d}+a^2 \int 1 \, dx-\frac {a^2 \text {Subst}\left (\int x^2 \, dx,x,\cos (c+d x)\right )}{d}-\frac {a^2 \text {Subst}\left (\int \frac {x^2}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = a^2 x+\frac {a^2 \cos (c+d x)}{d}-\frac {a^2 \cos ^3(c+d x)}{3 d}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{d}-\frac {a^2 \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d} \\ & = a^2 x-\frac {a^2 \text {arctanh}(\cos (c+d x))}{d}+\frac {a^2 \cos (c+d x)}{d}-\frac {a^2 \cos ^3(c+d x)}{3 d}+\frac {a^2 \cos (c+d x) \sin (c+d x)}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.42 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2 \left (9 \cos (c+d x)-\cos (3 (c+d x))+6 \left (2 \left (c+d x-\log \left (\cos \left (\frac {1}{2} (c+d x)\right )\right )+\log \left (\sin \left (\frac {1}{2} (c+d x)\right )\right )\right )+\sin (2 (c+d x))\right )\right )}{12 d} \]

[In]

Integrate[Cos[c + d*x]*Cot[c + d*x]*(a + a*Sin[c + d*x])^2,x]

[Out]

(a^2*(9*Cos[c + d*x] - Cos[3*(c + d*x)] + 6*(2*(c + d*x - Log[Cos[(c + d*x)/2]] + Log[Sin[(c + d*x)/2]]) + Sin
[2*(c + d*x)])))/(12*d)

Maple [A] (verified)

Time = 0.18 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.80

method result size
parallelrisch \(\frac {a^{2} \left (12 d x +9 \cos \left (d x +c \right )+6 \sin \left (2 d x +2 c \right )-\cos \left (3 d x +3 c \right )+12 \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8\right )}{12 d}\) \(57\)
derivativedivides \(\frac {-\frac {a^{2} \left (\cos ^{3}\left (d x +c \right )\right )}{3}+2 a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{2} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(73\)
default \(\frac {-\frac {a^{2} \left (\cos ^{3}\left (d x +c \right )\right )}{3}+2 a^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )+a^{2} \left (\cos \left (d x +c \right )+\ln \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )\right )}{d}\) \(73\)
risch \(a^{2} x +\frac {3 a^{2} {\mathrm e}^{i \left (d x +c \right )}}{8 d}+\frac {3 a^{2} {\mathrm e}^{-i \left (d x +c \right )}}{8 d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+1\right )}{d}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-1\right )}{d}-\frac {a^{2} \cos \left (3 d x +3 c \right )}{12 d}+\frac {a^{2} \sin \left (2 d x +2 c \right )}{2 d}\) \(114\)
norman \(\frac {a^{2} x +a^{2} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\frac {4 a^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {4 a^{2}}{3 d}+\frac {2 a^{2} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}-\frac {2 a^{2} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+3 a^{2} x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+3 a^{2} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{3}}+\frac {a^{2} \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}\) \(154\)

[In]

int(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/12*a^2*(12*d*x+9*cos(d*x+c)+6*sin(2*d*x+2*c)-cos(3*d*x+3*c)+12*ln(tan(1/2*d*x+1/2*c))+8)/d

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.21 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {2 \, a^{2} \cos \left (d x + c\right )^{3} - 6 \, a^{2} d x - 6 \, a^{2} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 6 \, a^{2} \cos \left (d x + c\right ) + 3 \, a^{2} \log \left (\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right ) - 3 \, a^{2} \log \left (-\frac {1}{2} \, \cos \left (d x + c\right ) + \frac {1}{2}\right )}{6 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

-1/6*(2*a^2*cos(d*x + c)^3 - 6*a^2*d*x - 6*a^2*cos(d*x + c)*sin(d*x + c) - 6*a^2*cos(d*x + c) + 3*a^2*log(1/2*
cos(d*x + c) + 1/2) - 3*a^2*log(-1/2*cos(d*x + c) + 1/2))/d

Sympy [F]

\[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=a^{2} \left (\int \cos ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int 2 \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx + \int \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )} \csc {\left (c + d x \right )}\, dx\right ) \]

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)*(a+a*sin(d*x+c))**2,x)

[Out]

a**2*(Integral(cos(c + d*x)**2*csc(c + d*x), x) + Integral(2*sin(c + d*x)*cos(c + d*x)**2*csc(c + d*x), x) + I
ntegral(sin(c + d*x)**2*cos(c + d*x)**2*csc(c + d*x), x))

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.06 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=-\frac {2 \, a^{2} \cos \left (d x + c\right )^{3} - 3 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} - 3 \, a^{2} {\left (2 \, \cos \left (d x + c\right ) - \log \left (\cos \left (d x + c\right ) + 1\right ) + \log \left (\cos \left (d x + c\right ) - 1\right )\right )}}{6 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

-1/6*(2*a^2*cos(d*x + c)^3 - 3*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^2 - 3*a^2*(2*cos(d*x + c) - log(cos(d*x + c)
 + 1) + log(cos(d*x + c) - 1)))/d

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.42 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {3 \, {\left (d x + c\right )} a^{2} + 3 \, a^{2} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}\right ) - \frac {2 \, {\left (3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 6 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 3 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, a^{2}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{3}}}{3 \, d} \]

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)*(a+a*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/3*(3*(d*x + c)*a^2 + 3*a^2*log(abs(tan(1/2*d*x + 1/2*c))) - 2*(3*a^2*tan(1/2*d*x + 1/2*c)^5 - 6*a^2*tan(1/2*
d*x + 1/2*c)^2 - 3*a^2*tan(1/2*d*x + 1/2*c) - 2*a^2)/(tan(1/2*d*x + 1/2*c)^2 + 1)^3)/d

Mupad [B] (verification not implemented)

Time = 9.73 (sec) , antiderivative size = 188, normalized size of antiderivative = 2.65 \[ \int \cos (c+d x) \cot (c+d x) (a+a \sin (c+d x))^2 \, dx=\frac {a^2\,\ln \left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}+\frac {-2\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+4\,a^2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+2\,a^2\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )+\frac {4\,a^2}{3}}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}+\frac {2\,a^2\,\mathrm {atan}\left (\frac {4\,a^4}{4\,a^4-4\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}+\frac {4\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{4\,a^4-4\,a^4\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )}{d} \]

[In]

int((cos(c + d*x)^2*(a + a*sin(c + d*x))^2)/sin(c + d*x),x)

[Out]

(a^2*log(tan(c/2 + (d*x)/2)))/d + (4*a^2*tan(c/2 + (d*x)/2)^2 - 2*a^2*tan(c/2 + (d*x)/2)^5 + (4*a^2)/3 + 2*a^2
*tan(c/2 + (d*x)/2))/(d*(3*tan(c/2 + (d*x)/2)^2 + 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^6 + 1)) + (2*a^2
*atan((4*a^4)/(4*a^4 - 4*a^4*tan(c/2 + (d*x)/2)) + (4*a^4*tan(c/2 + (d*x)/2))/(4*a^4 - 4*a^4*tan(c/2 + (d*x)/2
))))/d